Question: What is $e^{A t}$ where $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] ?$?
a. $\left[\begin{array}{cc}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right]$
b. $\left[\begin{array}{cc}e^{t} & t \\ 0 & e^{t}\end{array}\right]$
c. $\left[\begin{array}{cc}t e^{t} & e^{t} \\ 0 & t e^{t}\end{array}\right]$
d. $\left[\begin{array}{cc}e^{t} & \frac{1}{2} t^{2} \\ 0 & e^{t}\end{array}\right]$
e. None of the above.

Section 8.2: Nonhomogeneous linear systems

The story so far:
We have solved homogeneous systems $x^{\prime}=A x$ when

- A is diagonalizable.

The approach uses eigenvalues and eigenvectors to give a fundamental matrix.

Exponential give a way to write this., in that we can compute $\mathrm{e}^{\wedge} \mathrm{A}$ from the fundamental matrix.

- A is not diagonalizable, in some special cases. We did this by computing $e^{\wedge} \wedge$ directly for nilpotent matrices. It is possible to take the method further to get complete generality, but we do not do this. Go to Math 4242.

In this section:

- we do non-homogeneous equations $x^{\prime}=A x+F(t)$.

There are two approaches:

- the method of undetermined coefficients
- the method of variation of parameters

These extend the same methods that we applied in the case of equations in a single variable.

Method 1 is more elaborate when $F(t)$ is a function involving the same exponential as a solution of the corresponding homogeneous equation.

Method 2 deals with this automatically. Both methods are computationally intense!

Page 489 question $13+$ extra
Find a particular solution to $x^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] x+\left[\begin{array}{c}2 \\ -3\end{array}\right] e^{2 t}$
Solution 1: method of undetermined coefficients.
It is helpful (but not totally necessary for this problem) to solve the corresponding homogeneous equation:

Characteristic polynomial: $(2-\lambda)^{2}-1=\lambda^{2}-4 \lambda+3$

$$
=(\lambda-1)(\lambda-3)
$$

$$
\begin{aligned}
& \text { Eigenvalues and eigenvectors: } \\
& \lambda=1 \text { Null }\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \text { i e-vector }\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=3 \quad \text { Null }\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \quad \text { e-vector }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[e^{t} e^{3 t}\right.}
\end{aligned}
$$

Fundamental matrix: $\quad \Phi(t)=\left[\begin{array}{cc}e^{t} & e^{3 t} \\ -e^{t} & e^{3 t}\end{array}\right]$
We toy a solution $x=\left[\begin{array}{l}a \\ b\end{array}\right] e^{2 t}$

$$
x^{\prime}(t)=2\left[\begin{array}{l}
a \\
b
\end{array}\right] e^{2 t}
$$

Substitute: $e^{2 t}\left[\begin{array}{l}2 a \\ 2 b\end{array}\right]=e^{2 t}\left[\begin{array}{l}2 a+b+2 \\ a+2 b-3\end{array}\right]$
Equations

$$
\begin{aligned}
& 2 a=2 a+b+2 \\
& 2 b=a+2 b-3
\end{aligned}
$$

$$
b=-2 \quad a=3
$$

A particular solution is

$$
x(t)=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] e^{2 t}
$$

Page 489 question $13+$ extra
Find a particular solution to $x^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] x+\left[\begin{array}{c}2 \\ -3\end{array}\right] e^{t}$ Last tine the e^{t} was $e^{2 t}$.
Solution 1: method of undetermined coefficients. The fundamental matrix was:

$$
\Phi(t)=\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
-e^{t} & e^{3 t}
\end{array}\right]
$$

so that there is a solution to the homogeneous equation with the same power of e:

$$
x(t)=\left[\begin{array}{c}
e^{t} \\
-e^{t}
\end{array}\right]
$$

Solution Toy $x(t)=\left[\begin{array}{l}a \\ b\end{array}\right] t e^{t}+\left[\begin{array}{l}c \\ d\end{array}\right] e^{\tau}$
Find x^{\prime}, Substitute, get equation $A x a, b, c, t$.
The details of this were whiten in after class:

$$
\begin{aligned}
& x^{\prime}(t)=\left[\begin{array}{l}
a \\
b
\end{array}\right] t e^{t}+\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) e^{t} \\
& \quad=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] x+\left[\begin{array}{c}
2 \\
-3
\end{array}\right] e^{t}=\left[\begin{array}{c}
2 a+b \\
a+2 b
\end{array}\right] t e^{t}+\left[\begin{array}{l}
2 c+d+2 \\
c+2 d-3
\end{array}\right] e^{t}
\end{aligned}
$$

Equate coefficients of $t e^{t}$ and of e^{t} :
$\left.\begin{array}{l}a=2 a+b \\ b=a+2 b\end{array}\right\} \quad$ give $a+b=3(a+b)$ so $a+b=0$

$$
\left.\begin{array}{l}
a+c=2 c+d+2 \\
b+d=c+2 d-3
\end{array}\right\} \text { give }
$$

$$
a=c+d+2
$$

$$
b=c+d-3
$$

so $c+d=a-2=b+3=-a+3, \quad 2 a=5$ $a=5 / 2, b=-5 / 2 \quad c+d=\frac{1}{2}$
Also, these linear equations could have been solved more formally with row reduction.
Eventually $a=\frac{5}{2} \quad b=\frac{-5}{2}, c+d=\frac{1}{2}$ There are infinitely many solutions e.g. $c=\frac{1}{2}, d=0 \quad$ or $c=0, d=\frac{r}{2} \quad N C=\frac{1}{4} d=\frac{1}{4}$

See next page:
Notice: trying $x(t)=\left[\begin{array}{l}c \\ d\end{array}\right] e^{t}$ doesn't work:

$$
\begin{aligned}
& x^{\prime}(t)=\left[\begin{array}{l}
c \\
d
\end{array}\right] e^{t}=\left(\left[\begin{array}{c}
2 c+d \\
c+2 d
\end{array}\right]+\left[\begin{array}{c}
2 \\
-3
\end{array}\right]\right) e^{t} \text { so } \\
& {\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
2 c+d+2 \\
c+2 d-3
\end{array}\right], c+d=-2=3 .}
\end{aligned}
$$

There is no solution.

In the last calculation we eventually got solutions such as

$$
x(t)=\left[\begin{array}{c}
5 / 2 \\
-5 / 2
\end{array}\right] t e^{t}+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right] e^{t}
$$

Other vectors such as $\left[\begin{array}{l}0 \\ \frac{1}{2}\end{array}\right]$ or $\left[\begin{array}{l}1 / 4 \\ 1 / 4\end{array}\right]$
When we tried a solution could appears here

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] t e^{t}+\left[\begin{array}{l}
c \\
d
\end{array}\right] e^{t}
$$

it was necessary to include the term $\left[\begin{array}{l}c \\ d\end{array}\right] e^{t}$ unlike the case of single variable method of undetermined coefficients, because only some of the functions of the form

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right] e^{t}
$$

are solutions of the homogeneous equation, namely those that are scalar multiples of $\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{t}$

Pre-class Warm-up!!!
When $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ we cancalculate th at $e^{A t}=\left[\begin{array}{ll}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right]$.
Does this help us solve the system of equations $x^{2}=A x$?
Which of the following 4 a bars for the solution space?
a. $\left[\begin{array}{l}e^{t} \\ e^{t}\end{array}\right]$ and $t\left[\begin{array}{l}e^{t} \\ e^{t}\end{array}\right]$
b. $\left[\begin{array}{c}e^{t} \\ 0\end{array}\right]$ and $t\left[\begin{array}{l}e^{t} \\ e^{t}\end{array}\right]$
c. $\left[\begin{array}{c}e^{t} \\ 0\end{array}\right]$ and $\left[\begin{array}{c}t e^{t} \\ e^{t}\end{array}\right]$
d. $x=\left[\begin{array}{ll}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right]$
e. Not enough in formation to say

We know: $e^{A t}=\Phi \Phi(0)^{-1}$ where the columns of Φ are a basis for the solution space. The columbus oof $\Phi \Phi(0)^{-1}$ are linear combs of cols of Φ. They are independent.

Method of variation of parameters
We solve $x^{\prime}=A x+F(t), x(0)=c$.
The homogeneous equation has solution

$$
x=e^{A t} \subseteq \quad e^{A t}=\Phi \Phi(0)^{-1}
$$

Try a solution $x=e^{A t} \subseteq$ where $\subseteq=c(t)$ Then function of t.

$$
\begin{aligned}
x^{\prime} & =A e^{A t} \underline{c}+e^{A t} \underline{c}^{\prime}=A x+F \\
& =A e^{A t} \underline{c}+F
\end{aligned}
$$

Thus $e^{A t} \underline{c}^{\prime}=F, c^{\prime}=e^{-A t} F$

$$
c=\int e^{-A t} F d t
$$

The solution is $x=e^{A t} c=e^{A t} \int e^{-A t} F d t$

$$
\begin{aligned}
& =\Phi \Phi(0)^{-1} \int \Phi(0) \Phi^{-1} F d t \\
& =\Phi \int \Phi^{-1} F d t
\end{aligned}
$$

The last is Theorem 1, formula (22), on page 486.

$$
x=\Phi \int \Phi^{-1} F d t
$$

Note $e^{-A t}$ is the inverse of $e^{A t}$

$$
\text { Also " } \int_{\Phi(0) \Phi^{-1} \Phi(0)^{\prime \prime}=" \Phi(0) \int_{" 1}^{\prime \prime} \Phi^{\prime \prime} \text { because }(0)^{-1}}
$$ (1) (0) is a matrix of number.

Page 489 question $13+$ extra
Find a particular solution to $x^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \times+\left[\begin{array}{c}2 \\ -3\end{array}\right] e^{2}$
We solve the corresponding homogeneous equation:
Characteristic polynomial: $(\lambda-3)(\lambda-1)$
Eigenvalues and eigenvectors:

$$
\lambda=1 \quad e-v e c\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad d=3 \quad e-v e c=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Fundamental matrix: $\Phi(t)=\left[\begin{array}{cc}e^{t} & e^{3 t} \\ -e^{t} & e^{3 t}\end{array}\right]$

$$
\begin{aligned}
x & =\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
-e^{t} & e^{3 t}
\end{array}\right] \int \frac{1}{2 e^{4 t}}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
e^{t} & e^{t}
\end{array}\right]\left[\begin{array}{c}
2 e^{2 t} \\
-3 e^{2 t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
-e^{t} & e^{3 t}
\end{array}\right] \int \frac{1}{2}\left[\begin{array}{c}
5 e^{t} \\
-e^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
-e^{t} & e^{3 t}
\end{array}\right] \frac{1}{2}\left[\begin{array}{c}
5 e^{t} \\
e^{-t}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{c}
6 e^{2 t} \\
-4 e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
3 e^{2 t} \\
-2 e^{2 t}
\end{array}\right]
\end{aligned}
$$

Recall the formula:

$$
\underline{x}=\Phi \int \Phi^{-1} F(t) d t
$$

$$
\begin{aligned}
\Phi^{-1} & =\frac{1}{e^{t} e^{3 t}+e^{t} e^{3 t}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
e^{t} & e^{t}
\end{array}\right]} \\
& =\frac{1}{2 e^{4 t}}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
e t & e t
\end{array}\right]
\end{aligned}
$$

Page 489 question $13+$ extra
This is the same asbefore with e^{t}, not $e^{2 t}$ Find a particular solution to $x^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] x+\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Solution 2: method of variation of parameters.
We solve the corresponding homogeneous equation:

Fundamental matrix:

$$
\Phi(t)=\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
-e^{t} & e^{3 t}
\end{array}\right]
$$

Recall the formula:

$$
\underline{x}=\Phi \int \Phi^{-1} F(t) d t
$$

$$
\begin{aligned}
\Phi^{-1} & =\frac{1}{e^{t} e^{3 t}+e^{t} e^{3 t}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
e^{t} & e^{t}
\end{array}\right]} \\
& =\frac{1}{2 e^{4 t}}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
e t & e t
\end{array}\right]
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{rl}
x & =\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
-e^{t} & e^{3 t}
\end{array}\right] \int \frac{1}{2 e^{4 t}}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
e^{t} & e^{t}
\end{array}\right]\left[\begin{array}{c}
2 e^{t} \\
-3 e^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{c}
e^{t} \\
-e^{3 t} \\
-e^{t}
\end{array} e^{3 t}\right.
\end{array}\right] \int \frac{1}{2}\left[\begin{array}{c}
5 \\
-e^{-2 t}
\end{array}\right] d t\right] \quad \begin{array}{l}
e^{t} e^{3 t} \\
-e^{t} e^{3 t}
\end{array}\right] \frac{1}{2}\left[\begin{array}{c}
5 t \\
\frac{1}{2} e^{-2 t}
\end{array}\right] .
$$

which is the same as the answer we got before. with the choice $c=d=1 / 4$

Question:

Which did you like better?
a. the method of undetermined coefficients
b. the method of variation of parameters

